\square

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. (CBCS) II-Semester Main Examinations, May/June-2019

Quantum Mechanics and Semiconductor Physics

(EEE and ECE)

Time: $\mathbf{3}$ hours
Max. Marks: 60

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Q.No.		M	L	CO	PO
	$\text { Part-A }(10 \times 2=20 \text { Marks })$				
1.	What is photo electric effect? On what factors do the emitted photo electrons depend?	2	2	1	1,2,12
2.	Calculate the uncertainty in the velocity of an electron which is confined in a $10 \mathrm{~A}^{\circ}$ box.	2	3	1	1,2,12
3.	Explain Born interpretation of wave function.	2	2	1	1,2,12
4.	Write a short note on \boldsymbol{a}-decay.	2	2	1	1,2,12
5.	Compute the relaxation time of conduction electrons in a metal of resistivity $\quad 1.54 \times 10^{-8} \Omega-\mathrm{m}$ if the metal has 5.8×10^{28} conduction electrons $/ \mathrm{m}^{3}$.	2	3	2	1,2,12
6.	What are the salient features of Fermi-Dirac statistics?	2	2	2	1,2,12
7.	With increase of temperature the conductivity of semiconductor increases while that of metals decreases. Give reasons.	2	3	3	1,2,12
8.	For a semiconductor the Hall coefficient is $-3.66 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{C}$, and electrical conductivity is $112 \times 10^{7} \mathrm{~m}^{-1} \Omega^{-1}$. Calculate the density and mobility of charge carriers at room temperature.	2	3	3	1,2,12
9.	Write down the equation for total current density for electrons and holes due to drift and diffusion.	2	3	3	1,2,12
10.	Explain the conditions required for the formation of Schottky junction and Ohmic Junction.	2	3	3	1,2,12
Part-B ($5 \times 8=40$ Marks)					
11. a)	Describe the experimental verification of matter waves using DavissonGermer's experiment	5	2	1	1,2,12
b)	Electrons are accelerated by through 344 volts and are reflected from a crystal. The first reflection maximum occurs when glancing angle is 60°. Determine the spacing of the crystal.	3	3	1	1,2,12
12. a)	Set up Schrödinger wave equation for a particle in a potential well of infinite depth and solve it for finding the eigen values and eigen functions.	6	3	1	1,2,12
b)	A particle is moving in a one dimensional box of width $30 \mathrm{~A}^{\circ}$. Calculate the probability of finding the particle within an interval of $2 \mathrm{~A}^{\circ}$ at the centre of the box, when it is in its state of least energy.	2	3	1	1,2,12
13. a)	Obtain the expression for Density of States for a bulk material of volume V.	5	2	2	1,2,12
b)	With the help of suitable examples, compare direct and indirect band gap semiconductors.	3	2	2	1,2,12

14. a) Examine the variation of Fermi level with temperature both in n-type and p-type semiconductors.
b) Explain Hall Effect and obtain an expression for mobility of charge carriers.
15. a) Narrate the formation of PN junction under equilibrium with its band diagram.
b) Arrive at the equation of continuity for electrons and holes of a semiconductor.
16. a) What is Compton effect? Compute the wavelength of gamma radiation having photon energy 510 keV is incident on a foil of aluminum at 90°.
b) Derive Schrödinger time independent wave equation for a free particle.
17. Answer any two of the following:
a) Discuss the conclusions of Kronig-Penney model.
b) Show that for a p-type semiconductor the Hall coefficient is $R_{\mathrm{H}}=\frac{1}{p e}$
c) With the help of suitable equations, define diffusion length and mean life time. Find the diffusion coefficient and diffusion length of electrons in silicon at 300 K if $\mu_{\mathrm{e}}=0.19 \mathrm{~m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$.
$\left|\begin{array}{cccc}5 & 2 & 3 & 1,2,12 \\ 3 & 3 & 3 & 1,2,12 \\ 4 & 2 & 3 & 1,2,12 \\ 4 & 3 & 3 & 1,2,12 \\ 4 & 3 & 1 & 1,2,12 \\ 4 & 2 & 1 & 1,2,12 \\ 4 & 2 & 2 & 1,2,12 \\ 4 & 2 & 3 & 1,2,12 \\ 4 & 3 & 3 & 1,2,12\end{array}\right|$

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 \& 2)	60%
2	Knowledge on application and analysis (Level-3 \& 4)	40%
3	*Critical thinking and ability to design (Level-5 \& 6) (*wherever applicable)	

